Temporary short circuit detection in induction motor winding using combination of wavelet transform and neural network

نویسندگان

  • D. A. Asfani
  • A. K. Muhammad
  • Syafaruddin
  • Mauridhi Hery Purnomo
  • Takashi Hiyama
چکیده

Monitoring system for induction motor is widely developed to detect the incipient fault. Such system is desirable to detect the fault at the running condition to avoid the motor stop running suddenly. In this paper, a new method for detection system is proposed that emphasizes the fault occurrences as temporary short circuit in induction motor winding. The investigation of fault detection is focused on the transient phenomena during starting and ending points of temporary short circuit. The proposed system utilizes the wavelet transform for processing the motor current signal. Energy level of high frequency signal from wavelet transform is used as the input vriable of neural network which works as detection system. Three types of neural networks are developed and evaluated including feed forward neural network (FFNN), Elman neural network (ELMNN) and radial basis functions neural network (RBFNN). The results show that ELMNN is the most simply and accurate system that can recognize all of unseen data test. Laboratory based experimental setup is performed to provide real-time measurement data for this research. 2011 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Rotor Fault Detection in Induction Motor Using Particle-Swarm Optimization Optimized Neural Network

This study examined and presents an effective method for detection of failure of conductor bars in the winding of rotor of induction motor in low load conditions using neural networks of radial-base functions. The proposed method used Hilbert method to obtain the stator current signal push. The frequency and signal amplitude of the push stator were used as the input of the neural network and th...

متن کامل

Design of an Active Approach for Detection, Estimation and Short-Circuit Stator Fault Tolerant Control in Induction Motors

Three phase induction motors have many applications in industries. Consequently, detecting and estimating the fault and compensate it in a way that the faulty induction motor satisfies the predefined goals are important issues. One of the most common faults in induction motors is the short circuit of the stator winding. In this paper, an active fault-tolerant control system is designed and pres...

متن کامل

Novel Wavelet ANN Technique to Classify Interturn Fault in Three Phase Induction Motor

Early detection of faults in stator winding of induction motor is crucial for reliable and economical operation of induction motor in industries. Whereas major winding faults can be easily identified from supply currents, minor faults involving less than 5 % of turns are not readily discernible. The present contribution reports experimental results for monitoring of minor short circuit faults i...

متن کامل

Neural-Network-Aided On-line Diagnosis of Broken Bars inInduction Motors

This paper presents a method based on neural networks to detect broken rotor bars and end rings in squirrel cage induction motors. In the first part, detection methods are reviewed and traditional methods of fault detection as well as dynamic model of induction motors are introduced using the winding function method. In this method, all stator and rotor bars are considered independently in ord...

متن کامل

Neural-Network-Aided On-line Diagnosis of Broken Bars inInduction Motors

This paper presents a method based on neural networks to detect broken rotor bars and end rings in squirrel cage induction motors. In the first part, detection methods are reviewed and traditional methods of fault detection as well as dynamic&#10model of induction motors are introduced using the winding function method. In this method, all stator and rotor bars are considered independently in o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2012